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Abstract
Recently, the quantum brachistochrone problem has been discussed in the
literature by using non-Hermitian Hamilton operators of different types. Here,
it is demonstrated that the passage time is tunable in realistic open quantum
systems due to the biorthogonality of the eigenfunctions of the non-Hermitian
Hamilton operator. As an example, the numerical results obtained by Bulgakov
et al for the transmission through microwave cavities of different shapes
are analyzed from the point of view of the brachistochrone problem. The
passage time is shortened in the crossover from the weak-coupling to the
strong-coupling regime where the resonance states overlap and many branch
points (exceptional points) in the complex plane exist. The effect can not
be described in the framework of the standard quantum mechanics with the
Hermitian Hamilton operator and consideration of S matrix poles.

PACS numbers: 03.65.Xp, 03.65.Yz, 03.65.Vf, 73.63.Kv

1. Introduction

Recently, the quantum brachistochrone problem has been discussed in the literature with great
interest. It consists of finding the minimal time for the transition from a given initial state
|ψi〉 to a given final state |ψf 〉 with |ψf 〉 = e−iτH |ψi〉. Bender et al [1] found that this
minimal (passage) time can be made arbitrarily small by parametrical variation of H when H
is a non-Hermitian but PT -symmetric Hamiltonian. Assis and Fring [2] demonstrated that
such a phenomenon can also be obtained for dissipative systems and concluded that the effect
of a tunable passage time can be attributed to the non-Hermitian nature of the time-evolution
operator rather than to its PT -symmetry. In another paper devoted to this topic, Mostafazadeh
[3] showed that it is impossible to achieve faster unitary evolutions using PT -symmetric or
other non-Hermitian Hamiltonians than those given by Hermitian Hamiltonians. Günther
et al [4] found that the passage time is reduced under the influence of exceptional points being
branch points in the complex energy plane. The quantum brachistochrone problem has been
considered recently also by other authors [5–9].
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The question remains open whether or not this effect is observable in a realistic quantum
mechanical system. The best way to find an answer to this question is the consideration of
the transmission through a quantum mechanical device such as, e.g., a microwave cavity. The
waves propagate in the leads attached to the cavity which, on its part, represents an ‘impurity’
for the propagation. According to standard quantum mechanics, the propagation of the waves
through the cavity occurs at the positions in energy of resonance states. The transmission peaks
have a structure characteristic of resonances. The time which the wave spends in the system
is determined by the lifetime of the resonance states. That means, the transmission occurs via
so-called standing modes. This resonance picture of the transmission process describes well
the experimentally observed situation as long as the individual (long-lived) resonance states are
well isolated from one another. It breaks down, however, in the regime of strongly overlapping
resonances as numerical studies on Sinai billiards of different shapes as well as on quantum
billiards of Bunimovich type in the framework of the tight-binding lattice model [10] have
shown [11]. In this regime, the transmission picture does not show any resonance structure.
Instead, the transmission is plateau-like as a function of energy [11–13]. It is enhanced and the
delay time (determined by the lifetime of the resonance states) is shortened [11–14]. Finally,
the system becomes transparent and traveling modes appear inside the system. This behavior
of the transmission probability is shown to be correlated with a reduction of the phase rigidity
of the scattering wave function inside the system and with spectroscopic reordering processes
taking place in it [11, 13].

It is the aim of the present paper to show that the enhanced transmission through a quantum
billiard in the regime of strongly overlapping resonances as well as the shortened delay time
accompanying it, can be traced back to the existence of branch points1 in the complex plane
at which the eigenvalues of at least two eigenstates coalesce. Under the influence of these
points, the phases of the eigenfunctions of the non-Hermitian Hamilton operator describing
the open quantum system, cease to be rigid. This behavior contrasts with the rigidity of the
phases of the eigenfunctions of a Hermitian Hamilton operator. Thus, the shortening of the
evolution time in physical systems whose states are described by a non-Hermitian Hamilton
operator is a realistic effect, indeed, and can be observed in realistic open quantum systems in
the regime of overlapping resonances.

In section 2 of the present paper, the appearance of the non-Hermitian Hamilton operator
Heff in the Feshbach projection operator (FPO) technique is sketched. In section 3, the
mathematical freedom in the normalization of the eigenfunctions φλ of Heff is discussed as
well as the consequences of the chosen normalization for the rigidity of the phases of the φλ.
The phase rigidity rλ is introduced and compared with the results of an experimental study
performed on a microwave cavity. In the next section (section 4), the phase rigidity ρ of
the scattering wave function inside the system is defined. At the considered energy E of the
system it contains, in the regime of overlapping resonances, contributions of all the individual
resonance states λ including their phase rigidities rλ. The results of the S matrix theory for
the transmission through a microwave cavity are sketched in section 5. Deviations from the
standard theory based on the resonance structure of the transmission appear only in the regime
of overlapping resonances. Here, the phase rigidity ρ is reduced due to the many branch points
characteristic of this regime. It may happen ρ → 0 in a broader parameter range. In such
a case, the transmission has a plateau-like structure and may occur via traveling modes. The

1 In the mathematical literature, the branch points are often called exceptional points. Their physical meaning
is based upon their topological structure and their relation to, respectively, level repulsion and widths bifurcation
occurring in approaching them under different conditions. For details see, e.g., the reviews [15]. In the present paper,
the concept branch point is preferred since the physical properties of resonance states in the neighborhood of these
points (such as widths bifurcation) play the decisive role.
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system becomes transparent. In section 6, the results are summarized.and some conclusions
are drawn.

2. Feshbach projection operator (FPO) technique

In the present paper, the FPO technique [16] will be used in order to describe the transmission
through an open quantum microwave cavity. In the FPO formalism, the full function space
is divided into two subspaces: the Q subspace contains all wave functions that are localized
inside the system and vanish outside of it while the wave functions of the P subspace are
extended up to infinity and vanish inside the system, see [15]. It is P + Q = 1. In this
formalism, two Hamilton operators characterize the system. The first one, H, is Hermitian. It
describes the scattering in the whole function space,

(H − E)�E
C = 0, (1)

consisting of the two subspaces: the subspace of discrete states of the considered (closed)
system (described by the Hermitian operator HB) and of the subspace of scattering states
(continuum described by the Hermitian operator HC) into which the system is embedded.
In solving (1) in the whole function space by using the FPO technique [16], the effective
non-Hermitian Hamilton operator

Heff = HB +
∑
C

VBC

1

E+ − HC

VCB (2)

appears which contains HB as well as an additional symmetrical non-Hermitian term that
describes the coupling of the resonance states via the common environment. Here VBC, VCB

stand for the coupling matrix elements between the eigenstates of HB and the environment
[15] that may consist of different continua C. The operator Heff is non-Hermitian,

(Heff − zλ)φλ = 0, (3)

its eigenvalues zλ and eigenfunctions φλ are complex. The eigenvalues provide not only the
energies of the resonance states but also their widths (inverse lifetimes). The eigenfunctions
are biorthogonal.

The eigenvalues and eigenfunctions of HB contain the interaction u of the discrete states
which is given by the nondiagonal matrix elements of HB . This interaction is of standard
type in closed systems and may be called therefore internal interaction. The eigenvalues and
eigenfunctions of Heff contain additionally the interaction v of the resonance states via the
common continuum (v is used here instead of the concrete matrix elements of the second
term of Heff). This part of interaction is, formally, of second order and may be called external
interaction. While u and Re(v) cause level repulsion in energy, Im(v) is responsible for
the bifurcation of the widths of the resonance states (resonance trapping). The phenomenon
of resonance trapping appearing in the regime of overlapping resonances, has been proven
experimentally in a microwave cavity [17].

Since the effective Hamilton operator (2) depends explicitly on the energy E, so do its
eigenvalues zλ and eigenfunctions φλ. Far from thresholds, the energy dependence is weak,
as a rule, in an energy interval of the order of magnitude of the width of the resonance state.
The solutions of the fixed-point equations Eλ = Re (zλ)|E=Eλ

and of �λ = −2Im(zλ)|E=Eλ
are

numbers that coincide with the poles of the S matrix. The widths �λ determine the time scale
characteristic of the resonance states λ. Using the FPO formalism with the non-Hermitian
Hamilton operator Heff , it is however not necessary to look for the poles of the S matrix
since the spectroscopic information is involved in the complex eigenvalues zλ of Heff . In the
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S matrix, the eigenvalues zλ with their full energy dependence appear. Due to this fact, the
S matrix contains information on the environment of the considered resonance states such as
the position of decay thresholds and of neighboring resonance states.

Thus, the FPO formalism may be considered as an extension [18] of the R matrix theory
used in standard quantum mechanics for the description of decaying states. The standard
spectroscopic parameters (positions, widths and partial widths of the resonance states λ) are
replaced by the energy-dependent functions Eλ, �λ and coupling matrix elements between
system and environment. While R matrix theory gives reasonable results only for narrow non-
overlapping resonance states, the FPO formalism can be used for all resonance states including
the broad ones in the overlapping regime. The influence of neighboring resonances as well as
of decay thresholds is taken into account via the energy dependence of the eigenvalues zλ and
eigenfunctions φλ. The spectroscopic information can be controlled by means of an external
parameter. Also the redistribution processes taking place under the influence of the coupling
to the continuum in the overlapping regime can be traced. The results obtained in the FPO
formalism pass into those of the R matrix theory when the overlapping of the resonance states
vanishes.

3. Phase rigidity of the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff

The eigenfunctions φλ of the non-Hermitian symmetrical Hamilton operator Heff are complex
and biorthogonal. The normalization condition

〈
φleft

λ

∣∣φright
λ

〉 = 〈φ∗
λ

∣∣φλ〉 fixes only two of the
four free parameters [4]. This freedom can be used in order to provide a smooth transition
from an open quantum system (with, in general, nonvanishing decay widths�λ of its states and
biorthogonal wave functions φλ) to the corresponding closed one (with �λ → 0 and real wave
functions that are normalized in the standard manner): 〈φ∗

λ|φλ〉 → 〈φλ|φλ〉 = 1 if the coupling
vectors in the non-Hermitian part of (2) vanish. That means, the orthonormality conditions
can be chosen as

〈φ∗
λ|φλ′ 〉 = δλ,λ′ (4)

with the consequence that [15]

〈φλ|φλ〉 ≡ Aλ � 1 (5)

Bλ′
λ ≡ 〈φλ|φλ′ �=λ〉 = −Bλ

λ′ ≡ −〈φλ′ �=λ|φλ〉
∣∣Bλ′

λ

∣∣ � 0. (6)

The normalization condition (4) entails that the phases of the eigenfunctions in the overlapping
regime are not rigid: the normalization condition 〈φ∗

λ|φλ〉 = 1 is fulfilled only when
Im〈φ∗

λ|φλ〉 ∝ Reφλ· Imφλ = 0, i.e. by rotating the wave function at a certain angle βλ.
The phases of the wave functions of the original states corresponding to v = 0 (vanishing
non-diagonal matrix elements of the second term of (2)) are fixed, say to β0

λ = 0 or ±π ,
so that Imφ0

λ = 0. The influence of a neighboring state is described by v �= 0 (i.e., by
the non-diagonal matrix elements of the second term of (2)). At v �= 0, the angle βλ is
different from β0

λ , generally. The difference
∣∣βλ − β0

λ

∣∣ may be ±π/4 at most, corresponding
to Reφλ = ± Im φλ (as compared to Imφ0

R = 0). This maximum value appears at a branch
point in the complex energy plane (see footnote 1) where two eigenvalues of Heff coalesce
[4, 12, 15]. Here [4, 15, 19]

φλ → ± iφλ′ , φλ′ → ∓ iφλ. (7)

The phase rigidity defined by

rλ = 〈φ∗
λ|φλ〉

〈φλ|φλ〉 = 1

(Re φλ)2 + (Im φλ)2
= 1

Aλ

(8)
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is a useful measure [13] for the rotation angle βλ. When the resonance states are distant
from one another, it is rλ ≈ 1 due to 〈φλ|φλ〉 ≈ 〈φ∗

λ|φλ〉. In approaching a branch point in
the complex energy plane [15, 19], we have 〈φλ|φλ〉 ≡ Aλ → ∞ and rλ → 0. Therefore
1 � rλ � 0.

It should be underlined that, after defining the normalization condition (4), the values rλ

are fixed by the coupling matrix elements v of Heff characteristic of the degree of overlapping
of the resonance states. They can be varied by controlling the system by means of external
parameters, e.g. by means of a laser in the case of an atom with many levels (for concrete
examples see [20]). The rotation angle βλ as well as the values Aλ and rλ may be considered
to be a synonym for the biorthogonality of the eigenfunctions φλ of the non-Hermitian
Hamiltonian (2). They are a measure for the distance of the considered states from a branch
point in the complex plane and for the spectroscopic reordering processes occurring in an open
quantum system with overlapping resonance states under the influence of the coupling to the
continuum. Physically, the phase rigidity rλ measures the degree of alignment of one of the
neighboring resonance states with one of the scattering states ξE

C of the environment. This
alignment takes place at the cost of the other states that decouple, to a certain extent, from
the environment (widths bifurcation or resonance trapping occurring in the neighborhood of
a branch point in the complex energy plane [15]). The rλ are, generally, different for the
different states λ.

We consider now the experimental results obtained on a microwave cavity [21]. The
experimental conditions are chosen in such a manner that the phase difference between the
oscillating fields at the position of the antennas is π far from the branch point (see footnote
1). Then the phase difference is traced experimentally in approaching the branch point: in
a comparably large parameter range, it drops eventually to π/2 at the branch point. For an
interpretation of the results, the authors [21] consider the reduced phase difference only at the
branch point and relate it to the existence of a chiral state. They do not discuss the smooth
reduction from π to almost π/2 in approaching the branch point.

According to the discussion above, the experimentally observed [21] reduction of the
phase difference between the wave functions of the two states can be related to the reduction
of the phase rigidity of the two wave functions. The phase rigidity drops smoothly from
its maximum value r± = 1 far from the branch point (with the phase difference π (or 2π )
between the wave functions of isolated resonance states) to its minimum value r± = 0 at the
branch point (with the phase difference ±π/2 according to (7)). This interpretation explains,
in a natural manner, the experimentally observed smooth reduction of the phase difference in
a comparably large parameter range. Also the phase jump occurring at the branch point [4]
is not in disagreement with the experimental data. The results demonstrate the (parametric)
dynamics of open quantum systems which is generated by the interaction of resonance states
via the continuum as discussed above.

4. Phase rigidity of the scattering wave function ΨE
C

The solution of the whole problem (1) with the Hermitian Hamilton operator H reads [15]

�E
C = ξE

C +
∑

λ

�C
λ

〈
φ∗

λ

∣∣V ∣∣ξE
C

〉
E − zλ

, (9)

where

�C
λ =

(
1 +

1

E+ − HC

VCB

)
φλ (10)
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is the wave function of the resonance state λ and the ξE
C are the (coupled) scattering wave

functions of the continuum into which the system is embedded. According to (9), the
eigenfunctions φλ of the non-Hermitian Hamilton operator Heff give the main contribution
to the scattering wave function �̂E

C in the interior of the system,

�E
C → �̂E

C =
∑

λ

cλEφλ, cλE =
〈
φ∗

λ|V |ξE
C

〉
E − zλ

. (11)

The weight factors cλE contain the excitation probability of the states λ.
In the FPO method supplemented by the normalization condition (4), the definition of the

two subspaces (system and environment) appears in a natural manner: HB describes the closed
system which becomes open when embedded in the continuum of scattering wave functions
ξE
C described by HC . Therefore, all spectroscopic values characteristic of resonance states

can be traced to the corresponding values of discrete states by controlling the coupling to the
continuum. That means, with v → 0, the transition from resonance states (described by the
non-Hermitian Heff) to discrete states (described by the Hermitian HB) can be controlled.

Let us consider the one-channel case, C = 1, and �E
C → �̂E in the interior of the system.

From (11) follows for the right and left wave functions

|�̂E,R〉 =
∑

λ

cλE

∣∣φR
λ

〉
(12)

〈�̂E,L| =
∑

λ

dλE

〈
φL

λ

∣∣ (13)

with
∣∣φR

λ

〉 ≡ |φλ〉,
〈
φL

λ

∣∣ = 〈φ∗
λ| and dλE = c∗

λE when excitation and decay of the state λ occur
via the same mechanism. Therefore the �̂E can be normalized,

〈�̂E,L|�̂E,R〉 =
∑
λλ′

c∗
λEcλ′E〈φ∗

λ|φλ′ 〉

=
∑

λ

|cλE|2 ≡ 1. (14)

The normalization has to be done separately at every energy E due to the explicit energy
dependence of the cλE . Moreover,

〈�̂E,L∗|�̂E,R〉 =
∑
λλ′

cλEcλ′E〈φλ|φλ′ 〉

=
∑

λ

(cλE)2Aλ +
∑
λ<λ′

cλEcλ′E
(
Bλ′

λ + Bλ
λ′
)

=
∑

λ

(cλE)2Aλ (15)

due to Bλ′
λ = −Bλ

λ′ , see (6). Aλ is a real number, see [15]. From (14) and (15) follows

〈�̂E∗|�̂E〉
〈�̂E |�̂E〉 =

∑
λ

(cλE)2Aλ =
∑

λ

(cλE)2

rλ

, (16)

and the phase rigidity ρ of the wavefunctions �̂E may be defined by

ρ = e2iθ
∑

λ

Re [(cλE)2]

rλ

= e2iθ
∑

λ

1

rλ

([Re(cλE)]2 − [Im(cλE)]2) (17)
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in analogy to (8). The value ρ corresponds to a rotation of �̂E by θ corresponding to the
ratio between its real and imaginary parts. In spite of the complicated structure of ρ, it holds
1 � ρ � 0 (since 1 � (a2 − b2)/(a2 + b2) � 0 for every summand (a + ib)2 in (17)).
Equations (15) and (17) show that the definition of ρ is meaningful only when the sum of all
the overlapping states λ at the energy E of the system is considered. The value ρ is uniquely
determined by the spectroscopic properties of the system that are expressed by the coupling
coefficients to the environment and the level density, or by the positions and widths of the
resonance states and the phase rigidities rλ.

According to (17), we have the following border cases.

(i) The resonances are well separated from one another, �λ � �E ≡ Eλ − Eλ′ : rλ ≈ 1 and
(cλE)2 ≈ |cλE|2 = 1 for E → Eλ. In such a case |ρ| → 1.

(ii) The resonances overlap and rλ < 1 (but different from 0) for a certain number of
neighboring resonances: it may happen that ρ = 0 in a finite energy interval, see [11–13]
for numerical examples.

(iii) The eigenvalues zλ of two resonance states coalesce at E → Eλ: rλ → 0 and (cλE)2 → 0
at this energy, see e.g. [15]. Therefore ρ is finite at E → Eλ. The results of a numerical
example (double quantum dot) are shown in [13], figure 2.

(iv) K out of N wave functions �E
C are aligned with the K scattering wave functions ξE

C of
the environment while the remaining N − K wave functions are more or less decoupled
from the continuum and well separated from one another. In such a case, |ρ| → 1. In
contrast to the first case, the N − K trapped (narrow) resonance states are superposed by
a background term that arises from the K aligned (short-lived) resonance states.

This behavior of the phase rigidity ρ is traced in a numerical study for different quantum
billiards [11]. When the beam is fully reflected, it may, of course, also happen that |ρ| → 1
in a finite energy interval.

The wave functions �̂E are the exact solutions of the Schrödinger equation (1) in the
interior of the system. Equation (17) shows that ρ obtained for these wave functions is related
to the individual rλ. This relation becomes important only in the regime of overlapping
resonances where rλ < 1. Every value rλ as well as every coefficient cλE are given by the
concrete values of the coupling strength between system and environment in the concrete
situation considered. Thus, also ρ is uniquely determined by the degree of overlapping of the
resonance states by which the coupling matrix elements are determined.

This result is in contrast to the definition of ρbr given by Brouwer [22] by means of an
arbitrary wave function �̃ although

ρbr = e2i�

∫
dr(|Re �̃(r)|2 − |Im �̃(r)|2)∫
dr(|Re �̃(r)|2 + |Im �̃(r)|2) (18)

is formally analog to the definition (17). In the case of ρbr, the source for the reduction of
the phase rigidity is not known. It is rather expressed quite generally by the value ρbr in
analyzing experimental data. Unlike ρbr, the only source for the reduced phase rigidity (17) is
the biorthogonality of the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff by
which the alignment of individual wave functions φλ with the scattering wave functions ξE

C

of the environment becomes possible. It can be calculated as shown, e.g., in [11, 13]. The
alignment may be characterized by the corresponding rotation angles βλ or the phase rigidities
rλ as discussed in section 3. This effect is characteristic of open quantum systems in the
regime of overlapping resonances. It appears also at zero temperature.
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5. Transmission through a microwave cavity

5.1. Isolated resonances

According to the S matrix theory, the amplitude for the transmission through a quantum dot is
[23]

t = −2π i
∑

λ

〈
ξE
L

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
R

〉
E − zλ

. (19)

The eigenvalues zλ and eigenfunctions φλ of Heff are involved in (19) with their full energy
dependence.

For ρ = 1 and well isolated resonance states, the transmission amplitude (19) repeats the
resonance structure of (9) of the wave function �E

C . The transmission peaks appear at the
positions Eλ ≡ Re (zλ)|E=Eλ

≈ EB
λ of the resonance states. Using the relation [15]

�λ = 2π
{〈

ξE
L

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
L

〉
+

〈
ξE
R

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
R

〉}
= 4π

〈
ξE
C

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
C

〉
(20)

for the case of a symmetrical cavity with isolated resonance states and one channel in each of
the two identical (semi-infinite) leads (C = L,R, respectively), the peak height is

|t(E→Eλ)| = 4π

�λ

∣∣〈ξE
L

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
R

〉∣∣ = 1. (21)

Except for threshold effects, the profile of the transmission peak is of Breit-Wigner type,
determined by the width �λ ≡ −2Im (zλ)|E=Eλ

of the resonance state λ.
An analogous result holds when there is a nonvanishing background term additional to the

resonance term (19) of the transmission amplitude. Such a term is caused by the contribution
of the scattering wave functions ξE

C in (9) to the transmission. It describes a wave traveling
through the cavity. The time scale corresponding to this so-called direct part of the transmission
is, generally, well separated from that corresponding to the resonance part described by (19).2

Mostly, the resonances are narrow and well separated from one another. They appear as Fano
resonances [24] on the smooth background (caused by the traveling mode ξE

C ). Due to the
different time scales of the resonance and direct processes, it is |ρ| ≈ 1 also in this case.

Thus, the resonance structure of the transmission amplitude with and without contributions
from the direct reaction part can be described in the framework of standard quantum mechanics
with the Hermitian Hamilton operator and consideration of S matrix poles since the phases of
the wave functions of the resonance states are almost rigid, ρ ≈ 1.

5.2. Overlapping resonances

The situation is another one when the resonances overlap. In the overlapping regime, the
resonance states avoid crossings with neighbored resonance states. In contrast to (20), it holds

�λ < 4π
〈
ξE
C

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
C

〉
(22)

in the case with one channel in each of the two identical leads due to the biorthogonality of
the eigenfunctions φλ [15]. At E → Eλ, the transmission amplitude is

t(E→Eλ) = −2π i
∑
λ′ �=λ

〈
ξE
L

∣∣V ∣∣φλ′
〉〈
φ∗

λ′
∣∣V ∣∣ξE

R

〉
E − zλ′

− 4π

〈
ξE
L

∣∣V ∣∣φλ

〉〈
φ∗

λ

∣∣V ∣∣ξE
R

〉
�λ

. (23)

2 In many-body quantum systems such as nuclei, this fact is basic for the Unified Theory of Nuclear Reactions [16]
developed by Feshbach. Here, the (long-lived) states of the Q subspace are not calculated explicitly (as in [15] and,
e.g., in [23]), but are described by using statistical assumptions.
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It follows from (22) that the contribution of the state λ to t(E→Eλ) is larger than 1. The unitarity
condition will be fulfilled, nevertheless, due to the possibility of rotating the φλ, i.e. due to
phase changes of the wave functions φλ. Moreover, also the minima in the transmission
between two resonance peaks may be filled up due to phase changes of the wave functions
φλ and φλ′ of the two neighboring resonance states λ and λ′ [15]. As a consequence, the
transmission in the overlapping regime does not show a resonance structure. Instead, it might
be nearly plateau-like. Let us rewrite therefore the transmission amplitude (19) by means of
the scattering wave function (11),

t = −2π i
〈
ξE
L

∣∣V ∣∣�̂E
R

〉
(24)

with �̂E
R being complex, in general. The advantage of this representation consists of the fact

that it does not suggest the existence of resonance peaks in the transmission probability. Quite
the contrary, the transmission is determined by the degree of alignment of the wave function
�̂E

C with the propagating modes ξE
C in the leads, i.e. by the value

〈
ξE
C

∣∣V ∣∣�̂E
C

〉
. Nevertheless,

the expressions (24) and (19) are fully equivalent.
The plateau-like structure of the transmission cannot be obtained in standard quantum

mechanics with fixed phases of the wave functions, rλ = 1 and ρ = 1. It is generated by the
interference processes with account of the alignment of some of the resonance states to the
scattering states ξE

C of the environment. At most, Re �̂E
C = ±Im �̂E

C (as for the ξE
C ). This

case corresponds to ρ = 0. It will be reached when many resonance states are almost aligned
with the ξE

C and
∑

λ Re [(cλE)2]/rλ ≈ 0 according to (17).
Let us now consider the case of two resonance states with extremely strong overlapping

(corresponding to rλ1 = rλ2 = 0) which occurs at the branch point in the complex energy
plane. Here two eigenvalues z1 and z2 of Heff coalesce, Eλ1 = Eλ2 ≡ Eλ, �λ1 = �λ2 ≡ �λ.
In the case of one channel in each of the two identical leads, it follows from (19)

t(E→Eλ) → 4π

�λ

(〈
ξE
L

∣∣V ∣∣φλ1

〉〈
φ∗

λ1

∣∣V ∣∣ξE
R

〉
+

〈
ξE
L

∣∣V ∣∣φλ2

〉〈
φ∗

λ2

∣∣V ∣∣ξE
R

〉) = 0 (25)

at E → Eλ due to |φλ〉 → ±i|φλ′ �=λ〉 at the branch point, equation (7). That means, the
transmission vanishes at the energy E = Eλ of the two resonance states. The transmission
profile can be derived from (19) by taking into account the resonance behavior of the coupling
coefficients of the two resonance states [25, 26],

t = −2i
�λ

E − Eλ + i
2�λ

−
(

�λ

E − Eλ + i
2�λ

)2

. (26)

The interference between both terms in (26) causes two transmission peaks in an energy region
�E that is characteristic of the first term of (26). The resulting ‘antiresonance’ at E = Eλ is
narrower than a Breit-Wigner resonance, and the two transmission peaks are non-symmetrical.
Let us compare the transmission in the energy region �E when (i) there are two coalesced
eigenvalues of Heff as discussed above and (ii) there are two (more or less) isolated resonance
states resulting in two symmetrical transmission peaks of Breit–Wigner shape. In both cases
we have two transmission peaks, however with a different profile. As a consequence, the
transmission is different in the two cases. It is larger in the first case than in the second one.
The difference is however small.

Thus, ρ �= 0 in accordance with (17) in spite of rλ = 0 for the two states whose eigenvalues
coalesce at the branch point in the complex plane. Due to the reduced phase rigidities rλ of
the two states λ1 and λ2, this case can be described by standard quantum mechanics with
Hermitian Hamilton operators and fixed phases of its states at the best in an approximate
manner.
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5.3. Relation to the phase rigidity ρ

As a result of the above discussion, we have the following cases.

(1) The phases of the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff are
(almost) rigid, |rλ| ≈ 1 and |ρ| ≈ 1.

In this case, the transmission can be described quite well by standard quantum
mechanics with a Hermitian Hamilton operator and fixed phases. The transmission
shows a resonance structure according to the standing waves in the cavity. The time
delay of the transmission inside the cavity is caused by the finite lifetime of the individual
resonance states.

(2) The phases of the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff are not
rigid, |rλ| < 1 and |ρ| < 1.

In this case, the transmission cannot be described by standard quantum mechanics
with a Hermitian Hamilton operator, and the transmission does not show any pronounced
resonance structure. In a comparably large parameter range, it is rather plateau-like and
the transmission occurs, in this parameter range, via traveling modes through the cavity,
i.e. the cavity becomes transparent. The transmission does not occur through individual
resonance states in this case. Instead, the overlapping of the resonance states allows the
alignment of some of them with the traveling (scattering) states of the environment so
that the cavity does not cause a time delay of the transmission.

The numerical results [11] obtained for the transmission through microwave cavities of
different shapes show exactly the features discussed above. In the weak-coupling regime
as well as in the strong-coupling regime, the transmission shows a resonance structure as
expected from the standard quantum mechanics with a Hermitian Hamilton operator. The
only difference between the two cases is the appearance of a smooth background term in the
strong-coupling regime which does not exist in the weak-coupling case, and the reduction
of the number of resonance peaks by two (corresponding to the alignment of two resonance
states each with one channel in each of the two identical attached leads).

In the crossover from the weak-coupling regime to the strong-coupling one, however,
the transmission is plateau-like instead of showing a resonance structure. It is enhanced as
compared to the transmission probability in the two borderline cases. In this regime, the
resonance states overlap and spectroscopic reordering processes take place. Due to widths
bifurcation, some of the resonance states become short lived while other ones become trapped
(long-lived). The enhancement of the transmission is caused by the short-lived states. Most
interesting is the correlation between transmission |t | and reduced phase rigidity 1−|ρ| which
can be seen very clearly in all the numerical results shown in [11]. The transmission in the
crossover regime is not only enhanced but it also outspeeds the transmission calculated in
standard quantum mechanics. The reason is the formation of aligned (short-lived) resonance
states in the neighborhood of branch points in the complex plane.

The behavior of the transmission in the crossover regime with overlapping resonance
states does not correspond to the expectations of the standard quantum mechanics with the
Hermitian Hamilton operator, rigid phases of its eigenfunctions, and decay widths obtained
from poles of the S matrix. This can be seen also in the following manner. The time, the wave
spends inside the system at the energy of a resonance state, can be expressed by the Wigner
time delay function which is proportional to the width of the state. Numerical calculations
performed for a quantum billiard with overlapping resonance states by using the non-Hermitian
Hamilton operator (2) show that the spectroscopic redistribution processes can be seen, indeed,
also in the time delay function [14]. There is almost no time delay in the energy range of a
short-lived state while it is large at the energies of the trapped states. In the standard quantum
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mechanics with a Hermitian Hamilton operator, the spectroscopic redistribution processes are
not involved. Therefore, short-lived (aligned) resonance states do not appear, the delay time
cannot be reduced and the transmission time cannot be shortened.

6. Conclusions

The quantum brachistochrone problem of a physical system can be studied by considering the
time needed for the transmission through the system from one of the attached leads to another
one. According to S matrix theory, the transmission time at a certain energy E is determined
by the lifetime of the resonance states lying at this energy. The lifetime of a resonance state
is bounded from below: it cannot be smaller than allowing traveling through the system in
accordance with traveling through the attached leads, i.e. the system may become transparent
at most3. The difference between Hermitian and non-Hermitian quantum systems is that this
lower bound can be reached in non-Hermitian systems by aligning the wave functions of the
system with those of the environment while such a possibility does not exist in Hermitian
systems.

The condition that an alignment of wave functions of the system with those of
the environment becomes possible in non-Hermitian quantum mechanics, is resonance
overlapping such that many branch points exist in the parameter range considered. Only in the
neighborhood of these branch points, the eigenfunctions φλ of the non-Hermitian Hamilton
operator Heff are really biorthogonal and have the possibility to align with the traveling waves
ξE
C in the attached leads due to their interaction via the continuum. Mathematically, the

alignment is a consequence of the normalization of the eigenfunctions of the non-Hermitian
Hamiltonian Heff according to (4). The alignment takes place in a hierarchical manner [15].
It is maximal when many levels are almost aligned. In this case, ρ ≈ 0 in a certain range
of the considered parameter and the transmission is plateau-like with |t | ≈ 1 (for numerical
examples see [11, 13]). The system is transparent, up to some dips that appear in the case
when the system has many levels. These dips are caused by the long-lived trapped resonance
states that always appear together with the short-lived aligned resonance states (due to widths
bifurcation) in the neighborhood of the branch points. An example are the whispering gallery
modes in quantum billiards of Bunimovich type [11, 27]. At the critical point at which the
number of aligned states is exactly equal to the number of traveling waves ξE

C in the leads,
|ρ| > 0 and |t | < 1.

This freedom to align the wave functions of the individual states with the traveling
waves ξE

C in the attached leads does not exist in the Hermitian quantum mechanics. Instead,
the normalization of the wave functions according to 〈φλ|φλ〉 = 1 fixes the phases of the
individual wave functions in the Hermitian quantum mechanics and prevents any alignment.
As a consequence, it is always |rλ| = 1 and |ρ| = 1 in standard Hermitian quantum mechanics.
The transmission takes place via waves standing at a certain energy for a certain time inside
the system. This time is longer than the traveling time, generally. The transmission shows
a characteristic resonance structure that is described, in the standard theory, by means of the
poles of the S matrix. This resonance picture can be seen in the regime of weak coupling
between system and environment where the individual resonances are well isolated from one
another as well as in the regime of strong coupling where narrow resonances are superposed by
a smooth background. The crossover between these two borderline cases can not be described
by standard Hermitian quantum mechanics as it is very well known in the physics of open

3 In a many-particle system, the life time of a resonance state cannot be smaller than the lifetime of a single-particle
resonance with the corresponding quantum numbers.
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quantum systems. For example, an interpolation procedure between these two limiting cases
is proposed in [28]. The reason for the failure of the Hermitian quantum mechanics in this
case is, as shown above, |rλ| < 1 and |ρ| < 1 in the crossover regime.

Summarizing it can be stated that the brachistochrone problem is observable in realistic
open quantum mechanical systems. It is directly related to the branch points of the non-
Hermitian Hamilton operator. In the present paper, the transmission through a small open
quantum billiard is considered as an example. The system becomes transparent in the regime
of overlapping resonances since the Hamilton operator Heff is really non-Hermitian in this
regime and many branch points exist in the complex plane.
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